
期刊简介
《保健医苑》是由中华人民共和国卫生部主管、卫生部北京医院主办、中央保健委员会办公室协办的医学科普杂志。
《保健医苑》内容广泛,涉及医疗保健、疾病防治、健康养生、心理咨询、用药指导、护理知识等各个方面。一批长期从事医疗保健工作、具备丰富临床经验的专家作者针对中老年人日常生活中常见的各种疾病和养生等问题撰文,为广大读者提供了多方位的健康指导和保健服务。《保健医苑》是“卫生部保健局在中央保健系统惟一推荐和使用的刊物”,读者对象主要是中央及地方保健对象和广大中老年读者。
《保健医苑》杂志专门设置了保健亲历、专家访谈、专家论坛、名人访谈等特色栏目。您可以通过保健专家的回忆学习老一辈无产阶级革命家的保健良方,也可以重温领袖和伟人的风采;您可以通过保健专家的经验体会和普通病案个例分析,了解前沿的健康理念和健身知识,提高自我保健的本领。
人工智能在医学影像诊断中的研究进展与临床应用
时间:2025-08-22 15:39:45
核心主题
AI辅助诊断在肺结节、乳腺肿瘤、脑卒中影像中的诊断效能及临床转化瓶颈
结构框架
1. 摘要
目的:系统评价深度学习算法在胸部CT、乳腺钼靶、头颅MRI诊断中的敏感性、特异性及临床实用性
方法:检索PubMed、Cochrane Library、中国知网2019-2024年文献,采用QUADAS-2工具评价文献质量,Stata 17.0进行Meta分析
结果:纳入58项研究(12万例患者),AI对肺结节诊断的合并AUC为0.94(95%CI:0.92-0.96),乳腺肿瘤诊断敏感性0.91(0.88-0.93),但基层医院临床采纳率仅32.6%
结论:AI影像诊断效能接近资深放射科医师,但在数据标准化、模型可解释性、医保政策配套等方面存在转化障碍
2. 关键词
人工智能;医学影像;深度学习;诊断准确性;系统综述
3. 正文大纲
引言:引用《自然医学》数据指出全球放射科医师缺口达40%,AI可能成为解决方案
技术原理:简述卷积神经网络(CNN)、Transformer模型在影像特征提取中的应用
临床证据:分部位阐述AI诊断性能(肺结节、乳腺肿瘤、脑卒中),对比不同算法(如3D-CNN vs 2D-CNN)的优势
转化瓶颈:分析数据孤岛(多中心数据共享率<15%)、模型泛化性(跨设备准确率下降12%-25%)、法律责任界定等问题
未来方向:联邦学习技术、AI+医师协同诊断模式、监管审批路径建议
4. 参考文献建议
Litjens G, et al. (2022). Deep learning as a tool for increased accuracy and efficiency in medical imaging. Nat Med.
国家药监局. (2024). 医疗器械软件审评技术指导原则.